Iterative Null-space Projection Method with Adaptive Thresholding in Sparse Signal Recovery and Matrix Completion
نویسندگان
چکیده
Adaptive thresholding methods have proved to yield high Signal-to-Noise Ratio (SNR) and fast convergence in finding the solution to the Compressed Sensing (CS) problems. Recently, It was observed that the robustness of a class of iterative sparse recovery algorithms such as Iterative Method with Adaptive Thresholding (IMAT) outperforms the well-known LASSO algorithm in terms of reconstruction quality, convergence speed, and the sensitivity to the noise. In this paper, we introduce a new method towards solving the CS problem. The logic of this method is based on iterative projections of the thresholded signal onto the null-space of the sensing matrix. The thresholding is carried out by recovering the support of the desired signal by projection onto thresholding subspaces. The simulations reveal that the proposed method has the capability of yielding noticeable output SNR values with about as many samples as twice the sparsity number, while other methods fail to recover the signals when approaching twice the sparsity number for recovery. The computational complexity of our method is also comparable to other methods in the simulations. We have also extended our algorithm to Matrix Completion (MC) scenarios and compared its efficiency to other well-known approaches for MC in the literature.
منابع مشابه
The convergence guarantee of the iterative thresholding algorithm with suboptimal feedbacks for large systems
Thresholding based iterative algorithms have the trade-off between effectiveness and optimality. Some are effective but involving sub-matrix inversions in every step of iterations. For systems of large sizes, such algorithms can be computationally expensive and/or prohibitive. The null space tuning algorithm with hard thresholding and feedbacks (NST+HT+FB) has a mean to expedite its procedure b...
متن کاملIterative methods for random sampling and compressed sensing recovery
In this paper, two methods are proposed which address the random sampling and compressed sensing recovery problems. The proposed random sampling recovery method is the Iterative Method with Adaptive Thresholding and Interpolation (IMATI). Simulation results indicate that the proposed method outperforms existing random sampling recovery methods such as Iterative Method with Adaptive Thresholding...
متن کاملSparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for Lp-Regularization Using the Multiple Sub-Dictionary Representation
Both L1/2 and L2/3 are two typical non-convex regularizations of Lp (0<p<1), which can be employed to obtain a sparser solution than the L₁ regularization. Recently, the multiple-state sparse transformation strategy has been developed to exploit the sparsity in L₁ regularization for sparse signal recovery, which combines the iterative reweighted algorithms. To further exploit the sparse structu...
متن کاملFast thresholding algorithms with feedbacks for sparse signal recovery
We provide another framework of iterative algorithms based on thresholding, feedback and null space tuning for sparse signal recovery arising in sparse representations and compressed sensing. Several thresholding algorithms with various feedbacks are derived, which are seen as exceedingly effective and fast. Convergence results are also provided. The core algorithm is shown to converge in finit...
متن کاملSimultaneous Sparse Approximation Using an Iterative Method with Adaptive Thresholding
This paper studies the problem of Simultaneous Sparse Approximation (SSA). This problem arises in many applications which work with multiple signals maintaining some degree of dependency such as radar and sensor networks. In this paper, we introduce a new method towards joint recovery of several independent sparse signals with the same support. We provide an analytical discussion on the converg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.00287 شماره
صفحات -
تاریخ انتشار 2016